\qquad ID:_s \qquad DOB: \qquad /19 Department/Program: TN / TBK / BMT / ..

Final Exam Principles of Measurement Systems (PMS105E.2005-2006.2) Tuesday, February 7, 2006 (9:00-12:00)

Please write your name, student ID number and date of birth on this page, only your name on all subsequent pages, and number the pages. Hand in all paperwork, including these pages and any draft/scratch pages.
This is not an open-book exam, so please remove all other documents.
Read carefully. Pay attention to units. A numerical result without, or with wrong units, will be considered incorrect. You may assume that I know the answer to the questions posed; Therefore, give derivations and/or motivate your answers as appropriate! If you cannot answer the first part of a question, make a (educated) guess, and continue with the rest... Success!

Question 1

A thermocouple giving a DC output voltage $E_{t h}=6 \mathrm{mV}$ is connected to a digital voltmeter with input impedance $R_{L}=10 \mathrm{MOhm}$ through a cable with a finite resistance. Both the thermocouple and the digital voltmeter are capacitively coupled to different ground potentials. The equivalent circuit is given in Figure 2.1.
a) Calculate the RMS values of series mode and common mode interference voltages at the voltmeter input.

Figure 2.1. Equivalent circuit of the thermocouple - digital voltmeter arrangement. $\mathrm{E}_{\mathrm{th}}=6 \mathrm{mVdc}$, $\mathrm{R}_{\mathrm{C}}=100 \mathrm{Ohm}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{MOhm}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{Ohm}, \mathrm{C}_{1}=100 \mathrm{pF}, \mathrm{C}_{2}=1000 \mathrm{pF}, \mathrm{V}_{\mathrm{G}}=230 \mathrm{Vac}(\mathrm{rms})$.

Question 2

A researcher needs to detect a 3 kHz sinusoidal signal wave $m(t)=m_{0}+m_{l} \sin \left(2 \pi f_{m} t\right)$ from an optical experiment in a noisy environment. In order to shift the detection bandwith to a higher frequency he considers the use of an amplitude modulation (AM) detection technique. He is able to modulate his experiment at a frequency of 512 kHz .
a) Make a qualitatively correct graph of (the interesting part of) the frequency spectrum.
b) Derive an equation for the ratio of the power in one of the sidebands to the power in the carrier.

It turns out that l / f noise is still limiting the sensitivity of the experiment. Therefore, a colleague of the researcher decides to use frequency modulation (FM) instead. Using an Electro-Optical Modulator (EOM), she is able to modulate the experiment at a frequency of 1 GHz , truly beyond the highest frequencies in the noise spectrum.
c) Assuming a low modulation index (defined as the ratio of the maximum frequency deviation of the carrier to the modulation frequency) $k=1$, make a qualitatively correct graph of (the interesting part of) the frequency spectrum.
d) Explain how the graph of c) changes when the modulation index k is increased from 1 to 10 .

Question 3

A force measurement system consists of a piezoelectric crystal, charge amplifier, and recorder with an over-all transfer function given by:

$$
G(s)=\frac{\tau s}{1+\tau s} \cdot \frac{1}{\left(\frac{s}{\omega}\right)^{2}+\frac{2 \xi}{\omega} s+1}
$$

where the charge amplifier time constant equals 0.2 sec , and the natural frequency of the recorder is $60 \mathrm{rad} / \mathrm{sec}$, while its damping ratio is 0.1 .
a) Calculate the system dynamic error corresponding to the force input signal given by:

$$
F(t)=25\left\{\sin (20 t)+\frac{1}{3} \sin (60 t)\right\}
$$

b) Explain which system modifications are necessary to reduce the system dynamic error.

Question 4

A pressure transducer (manufactured by Baratron) consist of a 0 to 1 bar pressure sensor with integrated current transmitter. Its output is interpreted by a microprocessor system with integrated readout unit. A schematic representation is given in Figure 4.1

Figure 4.1
The two blocks are described by the following equations:

$$
\begin{aligned}
& i=a+b \cdot P+c \cdot P^{2}+d \cdot\left(T-T_{0}\right) \cdot P \\
& P_{M}=\alpha+\beta \sqrt{1+\gamma \cdot i}
\end{aligned}
$$

The mean values of the parameters and their standard deviations are given in Table IV.

Table IV. System parameter mean values and standard deviations

$\mathrm{a}=4 \mathrm{~mA}$	$\sigma_{\mathrm{a}}=310^{-3} \mathrm{~mA}$
$\mathrm{~b}=11 \mathrm{~mA} / \mathrm{bar}$	$\sigma_{\mathrm{b}}=510^{-3} \mathrm{~mA} / \mathrm{bar}$

$\mathrm{c}=5 \mathrm{~mA} / \mathrm{bar}^{2}$	$\sigma_{\mathrm{c}}=10^{-4} \mathrm{~mA} / \mathrm{bar}^{2}$
$\mathrm{~d}=0.5 \mathrm{~mA} /\left({ }^{\circ} \mathrm{C}\right.$ bar $)$	$\sigma_{\mathrm{d}}=10^{-3} \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ bar $)$
$\mathrm{T}_{0}=21^{\circ} \mathrm{C}$	$\sigma_{\mathrm{T}}=0{ }^{\circ} \mathrm{C}$
$\alpha=-1.1$ bar	$\sigma_{\alpha}=10^{-4} \mathrm{bar}$
$\beta=0.64 \mathrm{bar}$	$\sigma_{\beta}=510^{-4} \mathrm{bar}$
$\gamma=0.5 \mathrm{~mA}^{-1}$	$\sigma_{\gamma}=10^{-3} \mathrm{~mA}^{-1}$

a) Determine the accuracy and the precision of the pressure reading if the input pressure equals 0.75 bar. The environmental temperature is has an average value of $\langle\mathrm{T}\rangle=21^{\circ} \mathrm{C}$, but shows fluctuations characterized by a normal distribution with σ equal to $0.1^{\circ} \mathrm{C}$.
b) Is the temperature a modifying or interfering input? Explain your answer!
c) Discuss strategies to improve the accuracy and precision of this device.
d) Determine values for the parameters α, β, and γ, that optimize the accuracy of the pressure sensor (i.e., the response of the overall sensor should approach the ideal straight line $\mathrm{P}_{\mathrm{M}}=\mathrm{P}$ as close as possible; the temperature is $21^{\circ} \mathrm{C}$).

Bonus Question 5 (free after an example from Dr. Hasper's legacy)
A student has built a sensor to collect 63.7 MHz NMRI signals inside the human body. The signals are brought outside the body to a signal-conditioning unit by an optical link. The signal-conditioning unit consists of three elements, schematically represented in Figure 5.1: i) a photodiode which generates a current at the NMR frequency, and its associated shunt resistance (150 Ohm) and capacitance (3 pF), ii) a cable 50 cm long representing a capacitance of 100 pF , and iii) a current-to-voltage conversion unit consisting of a 10 kOhm resistor.

Figure 5.1
a) Determine the transfer function $G(s)=\Delta V_{\text {out }}(s) /{ }_{D} i(s)$ of the combined system (i to iii), and evaluate it numerically at the NMR frequency.
b) Qualitatively graph the amplitude ratio in the range $\log (\omega)=-3$ to +3 . Identify the important switch-over frequency(-ies) (Note: the logarithmic frequency axis is thus necessarily quantitative, but the units on the vertical axis may be arbitrary).
c) By how many dBs has the gain decreased (with respect to DC) at the NMR frequency?
The student in question decides to replace the current-to-voltage converter of Figure 5.1 by the op-amp circuit of Figure $5.2 . \mathrm{C}_{\mathrm{A}}=10 \mathrm{nF}, \mathrm{C}_{\mathrm{F}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{F}}=100 \mathrm{kOhm}$.

Figure 5.2
d) Determine the transfer function $G(s)=\Delta V_{\text {out }}(s) /_{D} i(s)$ of the new combined system and evaluate it numerically at the NMR frequency.
e) Sketch the amplitude ratio in the range $\log (\omega)=-3$ to +3 .
f) What may be the advantage of using this system over that of Figure 5.1?
... End of the Exam. Please take some time to fill out the questionnaire corresponding to your department or program of study (T)N or TBK.

PMS Final Exam Feb 7, 2006
QU

$$
\begin{aligned}
V_{C M}= & \frac{z C_{2}}{z_{C_{2}}+R_{C_{1}}+z_{C_{1}}+R_{C}} \cdot V_{C_{1}} \\
z_{C_{1}} & =\frac{1}{j \omega C_{1}}=\frac{1}{j 2 \pi f C_{1}}=\frac{-j}{2 \pi 50 \cdot 10010^{-12}}=-\frac{j}{\pi} \cdot 10^{8} \\
& =-j 3 \cdot 18 \cdot 10^{7} \\
z_{C_{2}} & =-j \cdot 3 \cdot 1810^{6}
\end{aligned}
$$

(5)

$$
\begin{aligned}
V_{C M}=\frac{-j 3 \cdot 1810^{6} \cdot V_{G}}{110-j \cdot 3 \cdot 1810^{6}-j 3 \cdot 18107} & \simeq \frac{V_{G}}{11}=0.0 .91 V_{G} \\
& =20 . g \mathrm{~V} \text { RMS }
\end{aligned}
$$

$$
\begin{aligned}
V_{S M} & =\frac{R_{C}}{R_{C}+Z_{C_{2}}+R_{G}+Z_{C_{1}}} \cdot V_{G} \\
& =\frac{100}{110-j .3 .8(1.1 \cdot 107)} V_{G} \approx j \cdot \frac{10^{2} V_{G}}{3.5010^{7}}=j \cdot 2.86 \cdot 0^{-6} \cdot V_{G}
\end{aligned}
$$

(5) $\rightarrow\left|V_{S M}\right|=2.8610^{-6} \cdot 230 V_{\text {RMS }}=6.5810^{-4} V_{\text {RMS }}$

Q2 $m(t)=m_{0}+m_{1} \sin \left(\omega_{m} t\right)$

$$
\begin{aligned}
\omega_{m} & =2 \pi f_{m} \\
\omega_{m} & =18.8 \mathrm{k} \mathrm{kd} / \mathrm{sec} \\
& =18800 \frac{\mathrm{rad}}{\mathrm{gec}}
\end{aligned}
$$

carries:

$$
c(t)=c_{c} \cdot \sin \left(\omega_{c} \cdot t\right)
$$

b) AM modulated wove:

$$
\begin{aligned}
M(t) & =c_{1} \cdot \sin \left(\omega_{c} t\right)\left\{m_{0}+m_{1} \sin \left(\omega_{m} t\right)\right\} \\
& =m_{0} c_{1} \cdot \sin \omega_{c} t+m_{1} c_{1} \sin \left(\omega_{c} t\right) \cdot \sin \left(\omega_{m} t\right) \\
& =c_{1}\left\{m_{0} \sin \omega_{c} t+\frac{m_{1}}{2} \cdot \cos \left(\omega_{c}-\omega_{m}\right) t-\frac{m_{1}}{2} \cos \left(\omega_{c}+\omega_{m}\right) t\right\}
\end{aligned}
$$

\rightarrow \{amplitude of one sideband: $\frac{c_{1} m_{1}}{2}$
\Rightarrow power \sim amplitude squared
(2) $\rightarrow \frac{P_{1} s}{P_{c}}=\frac{m_{1}^{2}}{4 m_{0}^{2}}$
a)
(3)

Q2
c)
(3)

positive or negative
are "Ok", depending on definition of y-axis.
d) The intensities of the sidebands will change, as well as
(2) that of the courier. Most likely the intensity in the sidebands will show a maximum for $n>1$ and tome sidebands may be stronger than the carrier.

Q3

$$
\begin{aligned}
& G(s)=\frac{\tau s}{1+\tau s} \frac{1}{\left(\frac{s}{\omega_{n}}\right)^{2}+\frac{2 \xi s}{\omega_{n}}+1} \\
& \tau=0.2 \sec , \quad \omega_{n}=60 \mathrm{rad} / \mathrm{sec}, \quad \xi=0.1 \\
& G(j \omega)=\frac{0.2 j \omega}{1+0.2 j \omega} \cdot \frac{1}{\left(1-\frac{\cos ^{2}}{3600}\right)+j \frac{\omega}{300}} \\
& \arg (\omega)=\frac{\pi}{2}-\tan ^{-1}\left(\frac{0.2 \omega}{1}\right)-\tan ^{-1}\left(\frac{\omega / 300}{1-\omega^{2} / 3600}\right) \\
& F(t)=2 s\left\{\sin (20 t)+\frac{1}{3} \sin (60 t)\right\}
\end{aligned}
$$

$\omega=20$

$$
\left.\psi_{G} G(j \cdot 20)\right)^{4}=\frac{4 j}{1+4 \cdot j} \frac{1}{\left(1-\frac{400}{3600}\right)+\frac{j}{15}}
$$

(1)

$$
|G(j \cdot 20)|=\frac{4}{\sqrt{17}} \cdot \frac{1}{\sqrt{\left(\frac{8}{9}\right)^{2}+\left(\frac{1}{15}\right)^{2}}}=1.0884
$$

(i)

$$
\begin{aligned}
\arg (20) & =\frac{\pi}{2}-\tan ^{-1}(40)-\tan ^{-1}\left(\frac{0.06667}{0.8889}\right) \\
& =1.571-1.326-0.044859 \quad\left(=9.73^{\circ}\right) \\
& =\text { A.angos } 0.170 \quad
\end{aligned}
$$

$$
\frac{\omega=60}{9(j \cdot 60)}=\frac{12 j}{1+12 j} \cdot \frac{1}{(1-10)+j \cdot \frac{i}{5}}
$$

(1) $\left|G_{1}(j 60)\right|=\frac{12}{\sqrt{145}} \cdot \frac{1}{(1 / 5)}=0.9965 \cdot 5=4.983$

$$
\text { (1) } \quad \begin{aligned}
\arg (60) & =\frac{\pi}{2}-\tan ^{-1}(12)-\tan \left(\frac{0.2}{0}\right) \\
& =\frac{\pi}{2}-1.4877-\frac{\pi}{2} \quad=-1.488 \quad\left(=-85.23^{\circ}\right)
\end{aligned}
$$

Qu
The measured force is therefore:
(1) $\quad F_{M}(t)=25\left\{1.088 \sin (20 t+0.17066)+\frac{4.983}{3} \sin (60 t-1.488)\right\}$

And the dynamic error :
(1)

$$
\begin{aligned}
E(t)= & F_{M}(t)-F(t) \\
= & 25\{1.088 \sin (20 t+0.170-\sin (20 t)\} \\
& +\frac{25}{3}\{4.983 \sin (60 t-1.488)-\sin (60 t)\}
\end{aligned}
$$

b)

Improving the system reoponce for the situation of a)
(1) most important : 1. increase natural frequency to well beyond $60 \frac{\mathrm{rad}}{\mathrm{sec}}$; say $300 \frac{\mathrm{sdd}}{\mathrm{sic}}$
(i)
2. Ebecreuse the damping ratio to close to the optimal value of $t^{\prime} \sim 0.7$.
(1) less important: 3. increase the change amplifier time constant; say $\tau^{\prime}=1 \mathrm{sec}$.
(Spurt totacal var b)

Q4. $\quad i=a+b \cdot P+c P^{2}+d\left(T-T_{0}\right) P$

$$
P_{M}=\alpha+\beta(1+\gamma \cdot i)^{1 / 2}
$$

a). For the accuracy, evaluate the mean value of the output PM:

$$
\begin{aligned}
\langle i\rangle & =\left(4+11 \cdot 0.75+5(0.75)^{2}+0.5(21-21) \cdot 0.75\right) \mathrm{mA} \\
& =4+8.25+2.8125+0 \mathrm{~mA} \\
& =15.0625 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
\left\langle P_{M}\right\rangle & =\left(-1.1+0.64(1+0.5 \cdot 15.0625)^{1 / 2}\right) \text { bar } \\
& =(-1.1+0.64 \cdot 2.92083) \text { bar } \\
& =0.76933 \text { bar }
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow \text { Error }=\left\langle P_{M}\right\rangle-\langle P\rangle & =0.76 \mathrm{~g} 33-0.75 \text { bar } \\
& =0.0193 \text { ban }
\end{aligned}
$$

$$
(=2.6 \% \text { of reading; }=1.9 \% \text { of full scale). }
$$

for the precision, evaluate the standoud deviation of the output:

$$
\begin{aligned}
\sigma_{i}^{2}= & \left(\frac{\partial i}{\partial a}\right)^{2} \sigma_{a}^{2}+\left(\frac{\partial i}{\partial \beta}\right)^{2} \sigma_{b}^{2}+\left(\frac{\partial i}{\partial c}\right) \sigma_{c}^{2}+\left(\frac{\partial i}{\partial d}\right) \sigma_{d}^{2}+ \\
& \left(\frac{\partial i}{\partial T_{0}}\right)^{2} \sigma_{T_{0}}^{2}+\left(\frac{\partial i}{\partial T}\right)^{2} \sigma_{T}^{2}+\left(\frac{\partial i}{\partial p}\right)^{2} \cdot \sigma_{p}^{2} \\
= & i^{2} \cdot \sigma_{a}^{2}+p^{2} \cdot \sigma_{b}^{2}+p^{2} \sigma_{c}^{2}+\left(T-T_{0}\right)^{2} p^{2} \cdot \sigma_{d}^{2} \\
& +(-d \cdot P)^{2} \sigma_{T_{0}}^{2}+(d \cdot P)^{2} \sigma_{T}^{2}+\left(b+2 c p+d\left(T-T_{0}\right)\right)^{2} \sigma_{p}^{2}
\end{aligned}
$$

Q4 coutinued...

$$
\begin{aligned}
\sigma_{i}^{2}= & \left(310^{-3}\right)^{2}+(0.75)^{2}\left(510^{-3}\right)^{2}+(0.75)^{4}\left(10^{-4}\right)^{2}+0 . \sigma_{d}^{2} \\
& +(d \cdot P)^{2} \cdot 0+(0.5 \cdot 0.75)^{2} \cdot(0.1)^{2}+0 \\
= & g 10^{-6}+0.5625 \cdot 25 \cdot 10^{-6}+0.316410^{-8}+0.140610^{-2} \\
= & 0.00143 \mathrm{~mA}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{p}^{2}= & \left(\frac{\partial p}{\partial \alpha}\right)^{2} \sigma_{\alpha}^{2}+\left(\frac{\partial p}{\partial \beta}\right)^{2} \sigma_{\beta}^{2}+\left(\frac{\partial p}{\partial \gamma}\right)^{2} \sigma_{\gamma}^{2}+\left(\frac{\partial p}{\partial i}\right)^{2} \sigma_{i}^{2} \\
= & 1 \cdot \sigma_{\alpha}^{2}+(1+\gamma \cdot i) \sigma_{\beta}^{2}+\frac{\beta^{2}}{4(1+\gamma i)} \sigma_{\gamma}^{2}+\frac{(\beta \gamma)^{2}}{4(1+\gamma i)} \sigma_{i}^{2} \\
= & 1 \omega^{-8}+(1+0.5 \cdot 15.0625) \cdot\left(510^{-4}\right)^{2}+\frac{0.64^{2}}{4(1+0.5 \cdot 15.0625)}\left(\omega^{-3}\right)^{2} \\
& +\frac{0.64^{2} \cdot 0.25}{4(1+0.5 \cdot 15.0625)} \cdot\left(1.43 \mathrm{w}^{-3}\right)^{2} \mathrm{ban}^{2} \\
= & 10^{-8}+8.3125 \cdot 25 \cdot 10^{-8}+0.0120 \mathrm{w}^{-6}+0.0030 \cdot 2.045 \mathrm{co}^{-6} \\
= & 10^{-8}+207.8 \mathrm{won}^{-8}+12 \cdot 10^{-9}+6.13 \mathrm{bo}^{-9} \mathrm{bau}^{2} \\
= & 2.1110^{-6} \mathrm{ban}^{2}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\rightarrow \sigma_{p}=1.45 \mathrm{w}^{-3} \text { baw } \quad(& =0.19 \% \text { of reading; } \\
& =0.15 \% \text { of full scale })
\end{aligned}
$$

Q4 continued...
b) for $P=0$ bow the output does not change with
(2) tampecerture, Temperature is therefore a modifying input, not an interfering input.
c). Short from implementing a completely different design, ane contd consider the following:

1. program the MP with the inverse equation of the Equation. The coeff can be determined by a calibration procedure.
(2) This is the subject of question d).
2. Temperature stabilisation at $21^{\circ} \mathrm{C}$. Passively, or better actively.
3. Input the a measurement of the envirommertid temperatione to the UP and use it to correct the measurement of the pressure.
d). Note that the equation $P_{M}=\alpha+\beta(1+\gamma \cdot i)^{1 / 2}$ is/shonld be the inverse of the equation for i :
(28) $i^{2}=a+b p^{2}+c p^{2}+d \cdot\left(T-T_{0}\right) p$. Since we may take $T=21^{\circ} \mathrm{C}=T_{0}$, the last term reduces to zero (instead of modifying b).
Thus:

$$
\begin{aligned}
& i=a+b \cdot P+c P^{2} \\
& \rightarrow \quad P=-\frac{b}{2 c} \pm \frac{1}{2 c}\left(b^{2}-4 c(a-i)\right)^{1 / 2} \\
&=-\frac{11}{10} \pm \frac{1}{10}(41+20 \cdot i)^{1 / 2}
\end{aligned}
$$

Q4 contimed...
d). $P=-1.1 \neq 0.1 \cdot \sqrt{41}\left(1+\frac{20}{41} \cdot i\right)^{1 / 2}$
(2) $\rightarrow\left\{\begin{array}{l}\alpha=-1.1 \\ \beta=\sqrt{41} / 10=0.640312 \\ \gamma=20 / 41=0.487805\end{array}\right.$
if these parameters are used, instead of those given in Table 4.1, the mean value of the output will exactly equal the input pressure, provided the temperatione $T=T_{0}=21^{\circ} \mathrm{C}$.

Q5
a). $\Delta V_{u}=\Delta i \cdot\left(R_{s}\left\|Z_{c_{s}}\right\| Z_{c_{c}} \| R_{L}\right)=: \Delta i \cdot Z_{\|}$

$$
\begin{aligned}
\frac{1}{z_{\text {II }}} & =\frac{1}{R_{S}}+\frac{1}{Z_{C S}}+\frac{1}{Z_{C}}+\frac{1}{R_{L}} \\
& =\frac{1}{R_{S}}+\frac{1}{R_{L}}+\left(C_{S}+C_{C}\right) \cdot S \\
Z_{\text {II }} & =\frac{R_{S} R_{L}}{\left(R_{S}+R_{L}\right)+R_{S} R_{L}\left(C_{S}+C_{C}\right) \cdot S}
\end{aligned}
$$

(1) $G_{1}(S)=Z_{/ 1}=\frac{R_{S} R_{L} /\left(R_{S}+R_{L}\right)}{1+\frac{R_{S} R_{C}}{R_{S}+R_{L}}\left(C_{S}+C_{C}\right) \cdot S}$
b)
(1)

a)

$$
\begin{aligned}
\tau & \equiv \frac{R_{S} R_{L}}{R_{S}+R_{L}}\left(C_{S}+C_{C}\right)=\frac{150 \cdot 10^{4}}{150+10^{4}} \cdot(3+100) 10^{-12} \mathrm{sec} \\
& =147.8 \cdot 10310^{-12} \mathrm{sec}=1.522 \cdot 10^{-8} \mathrm{sec} \\
\begin{aligned}
\omega_{n} & =\frac{1}{\tau}=6.56 \mathrm{~g} 10^{7} \mathrm{rad} / \mathrm{sec} \rightarrow f
\end{aligned} & =1.04510^{7} \mathrm{~Hz} \\
& =10.45 \mathrm{MHz}
\end{aligned}
$$

a) $f=63.7 \mathrm{MHz} \rightarrow \omega=2 \pi f=40010^{6} \mathrm{rad} / \mathrm{sec}$

$$
\rightarrow \omega t=4 \cdot 10^{8} \cdot 1.52210^{-8}=6.10
$$

(3)

$$
\left\{\begin{array}{l}
G(j \omega)=\frac{147.8}{1+j \cdot 6.10} \\
|G(j \omega)|=\frac{147.8}{\sqrt{1+6.1^{2}}}=23.9
\end{array}\right.
$$

(2) c). $20 \log \left(\frac{1}{\sqrt{1+6.1^{2}}}\right)=-15.8 \mathrm{~dB}$
d). $\quad \frac{\Delta V_{u}}{\Delta i}=-\frac{z_{F}}{z_{C_{A}}} \cdot z_{/ I}^{\prime} \quad$ with $z_{F}=\left(z_{C_{F}} / / R_{F}\right)$

$$
\begin{array}{r}
z_{1 \prime}^{\prime}=\left(R_{S}\left\|Z_{C_{S}}\right\| Z_{C_{C}} \|_{Z_{A}}\right) \\
C_{1}(s)=-\frac{Z_{C F} \cdot R_{F}}{z_{C_{A}}\left(Z_{C F}+R_{F}\right)} \cdot\left(\frac{1}{R_{S}}+\frac{1}{z_{S}}+\frac{1}{Z_{C}}+\frac{1}{Z_{C A}}\right)^{-1}
\end{array}
$$

(3) $\quad=-\frac{R_{F} C_{A} \cdot S}{1+R_{F} C_{F} S} \frac{R_{S}}{1+R_{S}\left(C_{S}+C_{C}+C_{A}\right) S}$
$G\left(j \cdot 4 \cdot 10^{8}\right)=\cdots$ Oops! forget to give the wheres of the op-amp components?

advantage may be a reduction of low - freq. noise contributions and the capability of the opanp to drive higher loads.

